Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

نویسندگان

  • Phillip J. Hendrickson
  • Gene J. Yu
  • Dong Song
  • Theodore W. Berger
چکیده

This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich spatio-temporal and oscillatory dynamics can evolve from a relatively small number of interacting local circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recruitment of an inhibitory hippocampal network after bursting in a single granule cell.

The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pa...

متن کامل

Area CA3 interneurons receive two spatially segregated mossy fiber inputs.

Area CA3 receives two extrinsic excitatory inputs, the mossy fibers (MF), and the perforant path (PP). Interneurons with somata in str. lacunosum moleculare (L-M) of CA3 modulate the influence of the MF and PP on pyramidal cell activity by providing strong feed-forward inhibitory influence to pyramidal cells. Here we report that L-M interneurons receive two separate MF inputs, one to the dorsal...

متن کامل

Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks.

Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecy...

متن کامل

Hilar mossy cell circuitry controlling dentate granule cell excitability

Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has part...

متن کامل

PTP and LTP at a hippocampal mossy fiber-interneuron synapse.

The mossy fiber-CA3 pyramidal neuron synapse is a main component of the hippocampal trisynaptic circuitry. Recent studies, however, suggested that inhibitory interneurons are the major targets of the mossy fiber system. To study the regulation of mossy fiber-interneuron excitation, we examined unitary and compound excitatory postsynaptic currents in dentate gyrus basket cells, evoked by paired ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015